ON THE CAUCHY PROBLEM OF A DEGENERATE
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ABSTRACT. In this article we deal with stochastic perturbation of degenerate parabolic partial
differential equations (PDEs). The particular emphasise is on analysing the effect of multiplicative
Lévy noise to such problems and establishing wellposedness by developing a suitable weak entropy
solution framework. The proof of existence is based on the vanishing viscosity technique. The
uniqueness is settled by interpreting Kruzkov’s doubling technique in the presence noise.
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1. INTRODUCTION

Let (Q, P F, {]'—t}tzo) be a filtered probability space satisfying the usual hypothesis i.e. {F;}i>0
is a right-continuous filtration such that Fy contains all the P-null subsets of (£, F). In addition, let
(E JE, m) be a o-finite measure space and N(dt, dz) be a Poisson random measure on (E ,E ) with
intensity measure m( dz) with respect to the same stochastic basis. The existence and construction
of such general notion of Poisson random measure with a given intensity measure are detailed in
[22]. We are interested in the Cauchy problem for a nonlinear degenerate parabolic stochastic PDE
of the following type

du(t,z) — A¢(u(t,x)) dt — div, f(u(t, z)) dt = /En(:mu(t,x); 2)N(dz,dt), (t,x)€Tlp, (1.1)

with the initial condition
u(0,x) = ugp(x), r € RY, (1.2)
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where I = [0,7) x R¢ with T > 0 fixed, u(t,z) is the unknown random scalar valued function,
F :R — R% is given flux function, and N(dz,dt) = N(dz,dt) — m(dz) dt, the compensated Poisson
random measure. Furthermore, (z,u, z) — n(x, u; z) is a real valued function defined on the domain
R? xR x E and ¢ : R — R is a given non-decreasing Lipschitz continuous function. The stochastic
integral in the RHS of is defined in the Lévy-Ito sense.

Remark 1.1. Since ¢ is a real valued non-decreasing, Lipschitz continuous function, the set
A= {7" eER:¢(r)= O} is not empty in general and hence the problem is called degenerate. Even
more, A is not negligible either and the problem is strongly degenerate in the sense of [10].

Remark 1.2. The analysis of this paper remains valid if the noise on the RHS of is of jump-
diffusion type. In other words, the same analysis holds if we add a o(x, u)dW; term in the RHS of
where W; is a cylindrical Brownian motion. Moreover, we will carry out our analysis under
the structural assumption £ = O x R* where O is a subset of the Euclidean space. The measure
m on E is defined as A x u where A is a Radon measure on O and p is a so called Lévy measure
on R*. In such a case, the noise of the RHS would be called an impulsive white noise with jump
position intensity A and jump size intensity p. We refer to [22] for more on Lévy sheet and related
impulsive white noise.

The equation becomes a multidimensional deterministic degenerate parabolic-hyperbolic
equation if n = 0. It is well-documented in the literature that the solution has to be interpreted
in the weak sense and one needs an entropy formulation to prove wellposedness. We refer to
[1L 10, 12, 13, B 25] and references therein for more on entropy solution theory for deterministic
degenerate parabolic-hyperbolic equations.

1.1. Studies on degenerate parabolic-hyperbolic equations with Brownian noise. The
study of stochastic degenerate parabolic-hyperbolic equations has so far been limited to mainly
equations with Brownian noise. In particular, hyperbolic conservation laws with Brownian noise
are the examples of such problems that have attracted the attention of many. The first docu-
mented development in this direction is [19], where the authors established existence of path-wise
weak solution (possibly non-unique) of one dimensional balance laws wvia splitting method. In a
separate development, Khanin et al. [20] published their celebrated work that described some sta-
tistical properties of Burgers equations with noise. J. U. Kim [21I] extended Kruzkov’s entropy
formulation and established the wellposedness for one dimensional balance laws that are driven by
additive Brownian noise. Multidimensional case was studied by Vallet and Wittbold [23], and they
established wellposedness of entropy solution with the theory of Young-measures but in a bounded
domain.

This approach is not applicable for multiplicative noise case. This was studied by many authors
([4, 111 15 18]). In [18], Feng and Nualart came up with a way to recover the necessary informa-
tion in the form of strong entropy condition from the parabolic regularisation and established the
uniqueness of strong entropy solution in LP-framework for several space dimensions but the exis-
tence was for one space dimension. We also add here that Feng and Nualart [I8] uses an entropy
formulation which is strong in time but weak in space, which in our view may give rise to problems
where the solutions are not shown to have continuous sample paths. We refer to [6], where a few
technical questions are raised on the strong in time formulation and remedial measures have been
proposed. In [I5], the authors obtain the existence via kinetic formulation and [I1] uses BV solution
framework. In a recent paper, Vallet et al. [4], established the wellposedness via the Young’s mea-
sure approach. The wellposedness result of the multidimensional degenerate parabolic-hyperbolic
stochastic problem has been studied by Vovelle, Hofmanova and Debussche [14], and Vallet et al.
[B]. In [14], they adapt the notion of kinetic formulation and develop a wellposedness theory. In
[3], the authors revisited [T}, 10, [T2] and established the wellposedness of the entropy solution wia
Young’s measure theory.

1.2. Relevant studies on problems with Lévy noise. Over the last decade there has been
many contributions on the larger area of stochastic partial differential equations that are driven by
Lévy noise. An worthy reference on this subject is [22]. However, very little is available on the
specific problem of degenerate parabolic problems with Lévy noise such as . This article marks
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an important step in our quest to develop a comprehensive theory of stochastic degenerate parabolic
equations that are driven by jump-diffusions. The relevant results in this context are made available
recently and they are on conservation laws that are perturbed by Lévy noise. In recent articles
[7, 8], Biswas et al. established existence, uniqueness of entropy solution for multidimensional
conservation laws with Poisson noise via Young measure approach. In [§], the authors developed a
continuous dependence theory on nonlinearities within BV solution setting.

Stochastic degenerate parabolic-hyperbolic equations are one of the most important classes of
nonlinear stochastic PDEs. Nonlinearity and degeneracy are two main features of these equations
and yield several striking phenomena. Therefore, it requires new mathematical ideas, approaches,
and theories. It is well-known that due to presence of nonlinear flux term, solutions to are not
smooth even for smooth initial data ug(x). Therefore the solutions must be interpreted in the weak
sense. Before introducing the concept of weak solutions, we first recall the notion of predictable
o-field. By a predictable o-field on [0, T] x €, denoted by Pr, we mean that the o-field generated
by the sets of the form: {0} x A and (s,t] x B for any A € Fop; B € Fs, 0 < s,t < T. The notion
of stochastic weak solution is defined as follows.

Definition 1.1 (Stochastic weak solution). An L2(R9)-valued {F; : t > 0}-predictable stochastic
process u(t) = u(t, z) is said to be a weak solution to our problem (L.1)) provided

1) ue L3(Q x lr) and ¢(u) € L2((0,T) x Q; HL(RY)).
(2) Zlu- fot [u (@, u(s,); 2)N(dz,ds)] € L*((0,T) x Q; H~*(R?)) in the sense of distribution.
(3) For almost every t € [0,7] and P— a.s, the following variational formulation holds:

0=(gil— [ [t N @),
+ /R {9o(u(t2)) + f(ult,)) }. Vo, (13)

for any v € H'(R?).

However, it is well-known that weak solutions may be discontinuous and they are not uniquely
determined by their initial data. Consequently, an admissibility criterion for so called entropy
solution (see Section [2| for the definition of entropy solution) must be imposed to single out the
physically correct solution.

1.3. Goal of the study and outline of the paper. The case of a strongly degenerate stochastic
problem driven by Brownian noise is studied by Bauzet et al. [3]. In this article, drawing primary
motivation from [3] [7, I0], we propose to establish the wellposedness of the entropy solution to
degenerate Cauchy problem by using vanishing viscosity method along with few a prior:
bounds.

The rest of the paper is organized as follows. We state the assumptions, details of the technical
framework and state the main results in Section [2] Section [3]is devoted to prove the existence
of weak solution for viscous problem wvia implicit time discretization scheme and to derive some
a priori estimates for viscous solution. In section [4, we first establish uniqueness of the limit
of viscous solutions as viscous parameter goes to zero via Young measure theory and then we
establish existence of entropy solution. The uniqueness of the entropy solution is presented in the
final section.

2. TECHNICAL FRAMEWORK AND STATEMENTS OF THE MAIN RESULTS

Here and in the sequel, we denote by N2(0,T, L?2(R%)) the space of predictable L?(R%)-valued
processes u such that IE{ fHT |u|? dt dz| < +o00. Moreover, we use the letter C to denote various

generic constants. There are situations where constants may change from line to line, but the
notation is kept unchanged so long as it does not impact the primary implication. We denote cg
and ¢y the Lipschitz constants of ¢, and f respectively. Also, we use <,> to denote the pairing
between H'(R?) and H~!(R%).
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2.1. Entropy inequalities. We begin this subsection with a formal derivation of entropy inequal-
ities a la Kruzkov. Remember that we need to replace the traditional chain rule for deterministic
calculus by Ito-Lévy chain rule.

Definition 2.1 (Entropy flux triple). A triplet (3,¢,v) is called an entropy flux triple if 8 € C%(R),
Lipschitz and 8 > 0, ¢ = ({1,(2,....Cq) : R = R? is a vector valued function, and v : R +— R is a
scalar valued function such that

(r)=p'(r)f'(r) and v/(r) = B'(r)¢(r).
An entropy flux triple (8, (,v) is called convex if 5 (s) > 0.

For a small positive number € > 0, assume that the parabolic perturbation
du(t,z) — Ag(u(t, x)) dt =div, f(u(t,x)) dt + / n(x, u(t,z); 2)N(dz, dt)
E

+eAu(t,x)dt, (t,z)€llp (2.1)

of (1.1) has a unique weak solution wu.(t,z). Note that this weak solution u. € L*((0,7T) x
Q; H'(R?)). Moreover, for the time being, we assume that it satisfies the initial condition in
the sense of . This enables one to derive a weak version of It6 -Lévy formula for the solutions
to , as detailed in the Theorem in the Appendix.

Let (3, (,v) be an entropy flux triple. Given a nonnegative test function 1 € C12([0, 00) x R?),
we apply generalised version of the It6-Lévy formula to have, for almost every T > 0,

ﬂ(uE(T7 x))’(/J(Tv aj) dr — Ra ﬁ(ua(ov $))¢(0, l‘) dz

Rd

= Blue(t, x))0)(t, x) da dt — Vi(t, z) - C(ue(t,x)) de dt

It

I
+/HT/E/Oln(x,ug(m);z)ﬁ’(us(t,x)+en(x,u€(t,x);z))¢(t,x) do N (dz, dt) dz

+/HT [E/Ol(l — O (@, e (t, 2); 2)B" (ue (£, @) + O (x, ue (8, 2); 2))9(t, ) dO m(dz) da dt
_/HT (Wbt 2) Ve (1) + € (e (t,2)) Ve (1,2) P (1, ) ) v

- [ St ) Vuclt o) (e o) ded+ [ vluc o) avt o) dode (22)

HT 1-[T

Let G be the associated Kirchoff’s function of ¢, given by G(z) = fox \/¢'(r) dr. A simple calculation
shows that |VG(uc(t,z2))|> = ¢/ (uc(t,x))|Vue(t, z)|?. Since 8 and 1) are nonnegative functions, we
obtain

0< [ Bu0.0)p00)dot [ {Buclta)ont. ) - Vult.e) - ((u(t. ) pdode
R4 IIr

- B (uc(t, )| VG (uc(t, z))|*(t, ) de dt + / v(ues(t, z))AY(t, ) do dt + O(e)

IIr

IIr
+/HT/E/O n(x,ug(t,x);z)ﬁ'(us(t,x)—|—Gn(x,ug(t,x);z))z/}(t,x)dQN(dz,dt)dx

1
_ 2 T, U ) 2)8" (u T T, U ) 2 T m(dz) de
+/HT/E/O (1 —=0)n*(x,uc(t,x); 2) 8 ( (t,x) + 0n(x,u(t, z); ))¢(t, ) dO m(dz) dz dt

Clearly, the above inequality is stable under the limit € — 0, if the family {u.}.~o has L} -type
stability. Just as the deterministic equations, the above inequality provides us with the entropy
condition. We now formally define the entropy solution.

Definition 2.2 (Stochastic entropy solution). A stochastic process u € N2(0,T, L?(R?)) is called
a stochastic entropy solution of (L.1)) if
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(1) for each T > 0, G(u) € L*((0,T) x Q; H'(R?)) and sup E[|ju(t)]|3] < oc.
0<t<T

(2) Given a nonnegative test function ¢ € C}2([0,00) x R?) and a convex entropy flux triple
(8,¢,v), the following inequality holds:

/n {B(U(tvx))aﬂﬁ(t, z) + v(u(t, z))Ay(t,z) — Vip(t, z) - C(ult, m))}d:p di
1 ~
+/HT/E/O n(x,u(t,x); 2) B (u(t,x) + On(x,ut,x); 2))p(t, x) dd N(dz,dt) dx
+ /H /E/O (1 = 0)n?(z,u(t, x); 2) 8" (u(t, z) + O n(z, u(t, x); 2))(t, z) dd m(dz) dz dt

> B (u(t, z))| VG (u(t,z))|?h(t, z) dx dt — /Rd Blug(2)y(0,z)dz, P —as. (2.3)

IIr

Remark 2.1. We point out that, by a classical separability argument, it is possible to choose a
subset of Q of P-full measure such that (2.3) holds on that subset for every admissible entropy
triplet and test function.

The primary aim of this paper is to establish the existence and uniqueness of entropy solutions
for the Cauchy problem (|1.1]) in accordance with Definition and we do so under the following
assumptions:

(A1) ¢:R — R is a non-decreasing Lipschitz continuous function with ¢(0) = 0. Moreover, if 7
is not a constant function with respect to the space variable z, t — /¢’ (¢) has a modulus
of continuity wg such that wslt) 5 0asr — 0.

r3

(A2) f = (fi,f2, -, fq) : R — R? is a Lipschitz continuous function with f;(0) = 0 for all
1<k <d.

(A.3) The space FE is of the form O x R* and the Borel measure m on E has the form A x 1 where
A is a Radon measure on O and p is a so-called one dimensional Lévy measure.

(A.4) There exist positive constants K > 0, \* € (0,1) and hy(z) € L*(E,m) with 0 < hy(2) <1
such that

[n(z,u; 2) = n(y,v;2)| < (N u—v|+ K|z —y|)hi(2) for all 2,y € RY; u,v €R; z € E.
(A.5) There exists a nonnegative function g € L>(R%) N L2(R%) and hy(z) € L?(E, m) such that
for all (x,u,z) € R x R x E,
(e, u; 2)| < g(2)(1 + |ul)ha(z).

The above definition does not say anything explicitly about the entropy solution satisfying the
initial condition. However, the initial condition is satisfied in a certain weak sense. Here we state
the lemma whose proof follows a simple line argument as in the Lemma 2.3 of [7].

Lemma 2.2. Any entropy solution u(t,-) of (1.1) satisfies the initial condition in the following
sense: for every non negative test function v € C2(R?) such that supp (¢) = K

%%E[% /Oh/K lult, 2) — uo(x)|(z) dmdt] ~0. (2.4)

Next, we describe a special class of entropy functions that plays an important role in later
analysis. Let §: R — R be a C* and Lipschitz function satisfying

p0)=0, B(=r)=p(r), B" >0,
and
—1 when r < —1,
B'(r)=4€[-1,1] when |r| <1,
+1 whenr > 1.
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For any 9 > 0, define 8y : R — R by
r
Balr) = 05(5).
Then

M-
[r| = M9 < By(r) < |r|and |B5(r)] < =5 1<, (2.5)
where
. My = sup |8"(r)].

Ir|<1 [r|<1

By simply dropping ¢, for 5 = 5y we define

¢%(a,b) = [} B'(0 = D)@/ (0)d(o),  F(a,b) = [, B'(0 = b)fi(o)d(o),
Fi(a,b) =sign(a — b)(fr(a) — fr(b)), F(a,b) = (Fi(a,b),Fa(a,b),...., Fs(a,b)).

We conclude this section by stating the main results of this paper.

Theorem 2.3. (Existence) Let the assumptions; Al be true, and that L*(R?)-valued Fo-
measurable random variable ug satisfies E[||ug||3] < oo. Then, there exists an entropy solution of

(L) in the sense of Definition[2.2]

Theorem 2.4. (Uniqueness) Let the assumptions be true, and that L?(R?)-valued
Fo-measurable random variable uo satisfies E[||ug||3] < co. Then, the entropy solution of (L) is
UNLQUE.

Remark 2.5. In addition, if ug is LP(RY) for p € [2,00) then it could be concluded that u €
L>(0,T, LP(Q x R%)). Furthermore, if ug € L™ and there is M > 0 such that n(z,u;z) = 0 for
lul > M and My = sup, |, <n,- [1(2, u; 2)| < 0o, then |u(t, z)| < max{M + M, [|ugl|oc} for almost
every (t,z,w) € IIp x Q. We sketch a justification of this claim in Section 4.

3. EXISTENCE OF WEAK SOLUTION FOR VISCOUS PROBLEM

Just as the deterministic problem, here also we study the corresponding regularized problem by
adding a small diffusion operator and derive some a priori bounds. Due to the nonlinear function
¢ and related degeneracy, one cannot expect classical solution and instead seeks an weak solution.

3.1. Existence of weak solution to viscous problem. For a small parameter € > 0, we consider
the viscous approximation of (|1.1)) as

du(t,z) — A¢(u(t,x)) dt =div, f(u(t,z)) dt + /E n(zx,u(t, z); )N (dz, dt)

+eAu(t,z)dt, t>0, recR% (3.1)

In this subsection, we establish the existence of a weak solution for the problem . To do this,
we use an implicit time discretization scheme. Let At = % for some positive integer N > 1. Set
t,=nAtforn=0,1,2--- | N.

Define

N = L*(Q; H'(RY), N, = {the F,a; measurable elements of N},
H = L*(Q; L*(RY)), H, = {the F, o, measurable elements of H}.

Proposition 3.1. Assume that At is small. For any given u, € H,, there exists a unique un41 €
Nos1 with ¢(uns1) € Nyt1 such that P—a.s. for anyv € HY(RY), the following variational formula
holds:

/Rd ((un+1 — Uy )V + At{qu(un_H) +eVuper + f(un+1)} . Vv) dx

tnt1 N
= / / / n(z, un; 2) v N(dz,ds) dz. (3.2)
R Jt, E
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Before proving the proposition, first we state a key deterministic lemma, related to the weak
solution of degenerate parabolic equations. We have the following lemma, a proof of which could
be found in [ page 19, [9] |.

Lemma 3.2. Assume that At is small and X € L*(R?). Then, for fized positive parameter ¢ > 0,
(1) there exists a unique u € H'(RY) with ¢(u) € H'(R?) such that, for any v € H*(R?)

/Rd (uv + At{w(u) +eVu+ f(u)} ~ Vv) dz = | Xvde. (3.3)

Rd
(2) There exists a constant C = C(At) > 0 such that the following a priori estimate holds

([l (gay + [10(W)| 371 gay + €l Vuul[f2gay < ClIX |72 ra- (3.4)
e ma : X € — (u,d(u)) € 18 continuous.
(3) The map © : X € L*(R?) = (u, ¢(u)) € H'(R?)? q

Proof of the Proposition Let U, € Np,. Take X = u,, + ftt"“ S (e, wn; z)N(dz,ds). Then,
by the assumption [(A.5)] we obtain

B I1X1132 )| < [lunll; + € At(lg1132(ze) + ] r)-

This shows that for a.s. w € Q, X € L?(R?). Therefore, one can use the Lemma and
conclude that for almost surely w € Q, there exist unique u(w) satisfying the variational equality
. Moreover, by construction X € H, 1. Thus, due to the continuity of © for the F(, 1)
measurability and to a priori estimate , we conclude that v € Nj,11 with ¢(u) € N, 11. We
denote this solution u by u,11. Hence the proof of the proposition follows.

3.1.1. A priori estimate. Note that, for any v € D(R fRd -Vudx = 0 and hence true for
any v € H'(R?%) by density argument. We choose a test functlon V= Upy1 in and have

/ (Ut — i )ty 1 d + Al / & (1) | Vttg 1|2 da + £ At / Vtp 1|2 da

tnt1
/ / / (x,un; 2 (dz ds)un 41 dz
Rd Jt,

ntl 5 a
S/ / /n($7un;Z)UnN(dZ,d8)dx+*Hun+1—Un||%2(nw)
R4 2

n+41 2
/ / T, Up; 2 (dz ds)) dz, for some o > 0.
]Rd

Since [5q [Vo(u) |2 de = [pa|¢'(w) Vul? de < cg [pa @' (u)|Vul? dz, we see that
At
2o < AE[ [ ¢Tu de). (35)
C¢ Rd

In view of the assumption [(A.5)} the inequality (3.5)), It6-Lévy isometry, and the fact that for any
a,b€R, (a—b)a=3(a®+ (a—b)*—b?), we obtain

1 At
g [l Y = vl B = lhunl ] + IV + < A Vot

@ C At
§§Hun+1 unH’H""WO"‘H“HHH)
Since a > 0 is arbitrary, one can choose a > 0 so that

n—1 n—1

ey + > Mutkorr — el + Z IV (unr1)| + et Y ([ VurallF,
k=0 k=0
n—1
<O+ CoAt Z ||ugl|3,, for some constants C;,Cy > 0. (3.6)

k=0
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Thanks to discrete Gronwall’s lemma, one has from (3.6)),

n—1 n—1 n—1
el + Y lurss — ugl B + % D NIVo(une)llfy + ety [Vupallf <€ (3.7)
k=0 ? k=0 k=0
For fixed At = %, we define
N N
() = D wdienackan®; B0 = Y [ E = (k= DAY +ue | L nackan®)
k=1 k=1

with u®(t) = ug for ¢ < 0. Similarly, we define

N B B
k — DPk— 1
BA(1) Z [ — (k= 1)At] + kal} Li(—1)atkan (t),
k=1

(k+1)At 5 nAt }
/ / n(z, ug; 2)N(dz,ds) = / / n(x, uPt(s — At); z)N(dz, ds).
kA E 0 E

A stralghtforward calculation shows that

where

HuAt max

HL°° O.TH) ~ pion H Bl (3% HL°°(OT7-L) k=01 N [P
[ u — ~At||L2(OT’H) < Atz ||uk+1 *“kHH'
Since ¢ is a Lipschitz continuous function with ¢(0) = 0, in view of the above definitions and a
priori estimate , we have the following proposition.

Proposition 3.3. Assume that At is small. Then ut, @™t are bounded sequences in L™ (0, T;H);
d(ult), eurt are a bounded sequences in L*(0,T; N) and ||[u®t — ﬂAtH%Q(O,T;H) < CAt.
Moreover, uAt — uAt(- — At) — 0 in L?(Q x II7).

Next, we want to find some upper bound for BAt(t). Regarding this, we have the following
proposition.

Proposition 3.4. B2 is a bounded sequence in L*(Q x IIp) and

‘BN/ // z,ut (s — At); 2)N(dz, ds)‘

Proof. First we prove the boundedness of B2(t). By using definition of B2*(t), the assumption
and boundedness of u2* in L>°(0,T;H), we obtain

N
||BAtHL2(0T L2(Q, L2(Rd))) = Atz HBkHLz ()

<AtZE ‘/Rd/kAt/ (z, uB (s — At); )N(dz,ds)dm‘z}
kAt
gCAt];)E[/ / 2) (14 [u (s — A1) dr ds|

< 0(1 + ||uAtHL°°(O,T;L2(Q><Rd))) < 4o0.

< CAt.
L2(QxR%)

Thus, B2 is a bounded sequence in L(Q x IIp).

To prove second part of the proposition, we see that for any t € [nAt, (n+ l)At),

BA(t) // (z,u (s — At); 2)N(dz, ds)
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i nAt (n+1)At R ¢ R
/ / n(z, ut(s — At); 2)N(dz, ds) — / / n(x, u (s — At); 2)N(dz, ds)
nA nAt

t _ At n+1)At
" / / &, Up; 2) N (dz, ds) / / T, Up; 2)N(dz, ds).
nAt

Therefore, in view of | and assumption [(A.5)] we have
‘BAt / / z,ut (s — At); 2)N(dz, ds))
L2(QxR%)

t— At (n+1)A¢ 2
/ ¢ / /n(xyun; N(dz, ds) / / (2, un; 2) N (d2 ds)’ dzx
R nA nAt
t— At (n+1)At
§2/ . / / (z, un; 2) m(dz ds+/ / (2, un; 2) m(dz) ds| dx
R4 nAt

(t — nAt)?
<O(1+funl) [T

This completes the proof. ([l

2

=E

(- nAt)} < CAt.

3.1.2. Convergence of u?*(t,r). Thanks to Proposition and Lipschitz property of f and ¢,
there exist u, ¢, and f, such that (up to a subsequence)

uht =¥y in  L>(0,T; L*(Q x RY))
ubt =y in L%((0,T) x Q; HY(R?))  (for fixed positive ¢)
Pp(ult) = ¢, in L*((0,T) x ; H(RY))
F(u®') = f, in L*((0,T) x @ x R%).
Next, we want to identify the weak limits ¢, and f,. Note that, for any v € H'(R?), we can
rewrite (3.2), in terms of ', a%" and BAt a5

[, (5@ = 35900+ {Tolu () + V(o) + fa(0) ) - Vo) o =0, (39)

(3.8)

ot

Lemma 3.5. {u®'} is a Cauchy sequence in L?(Q2 x TIr).

Proof. Consider two positive integers N and M and denote At = %, As = % Then, for any

v € HY(R?), one gets from (3.9),

L. (gt (@ = B)(1) - @ = B2)(0)] v+ {V (6(u®(1) - o(u (1))

+ev (uAt(t) - uAs(t)) + (f(uAt(t)) - f(uAs(t)))} : w) dz = 0. (3.10)
Let w = (@2 — BAY)(t) — (a®* — BA*)(t). Set v = (I — A)~'w in (3.10). Then, one has

ﬁnv(wnipm + [ (o) = ot ) Jwds = [ (0(u(0) = 6(u(0) ) da
+ e/Rd(uAt —urwdz — 6/Rd(um —uA v de + /Rd (f(uAt) — f(uAS)) -Vodr=0. (3.11)

Note that, w = (u2t — u25) — (BAL — BA%) — (u®t — 4A1) 4 (s — a29).
Therefore,

/Rd ((JS(uAt(t)) _ ¢(U’As(t)))’wd$
B /Rd (¢(“At(t)) - ¢(UAS(t))) (utt — ut®) dx — /

Rd

= [ (o) = ot s ) {w = @) + (@2 —ut)} o

(o) = 9w (1)) (BY = BA) da
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(6 (1)) — o> 1)) da

10

- /]Rd ((ZS(UAt(t)) - ¢(uAs(t))> (UAt — UAS) dr — 22—34; R

~ ~ 2
_ ¢ {(BAt _ BAS) + (uAt _ ’ELAt) + (i‘LAS _ uAS)} dr

2 Jpa

1 t s t s
>3 [ (00) = 6 (0)) (0 = )
C2<i> 9 {(BAt ~OBA) 1 (WA — ) 4 (@b — um)}z da
> 0 [ LB = B (B = it + (@ - uAS)}2 dr  (byeq(A.1). (3.12)
Rd

Similarly, we also have

5/ (uBt — uP*)w da
Rd
2
T (T uAS)} de.  (3.13)

ZE/ (uAt_uAs)de_f/ {(BAt_BAs)+(uAt_u
2 Jpa 2 Jpa

Combining (3.11)), (3.12) and (3.13) in

10 € R
3Ol + 5 [ @ —utRde

(co +¢) DAL PAs t ~AL ~As sy 12
<¢7/Rd{(BA = B 4 A — @A) + (@8 — )} da

+ E/Rd(um —uPvdr — /Rd (F(uAt) — F(uAs)) -Voudzx +/ <¢(uAt(t)) — gb(uAs(t)))vdx

<7(C¢+€>/ {(BN—BAS)+(u“—aN)+(aM—uAS)} do+ 2 \Vo|? da
» 4 Jpa

- 2
2 2
_’_% (uAt _ uAs)Qda: + (g +E%) /Rd U2 dx + (Cf) ;(Cd)) /Rd(uAt _ UAS)Z dx
for some a and # > 0. Since «, 8 > 0 are arbitrary, there exist positive constants C1,Cs and Cj
such that

t t
E[llo(t) 3 oy | — O / E [l @) | dr + C / B[t = u | oy | dr

t
< C3{HuAt _ ’&AtHi?(QXHT) i HuAs _ ~ASHL2(Q><HT) _|_/0 EMBN _ BASHi2(Rd):| dr}. (3.14)

In view of the Proposition we notice that

Hum - ﬂAt”m(anT) +|u ~ASHL?(QxH ) S C(At+ As). (3.15)
So we need to estimate the term fot E {HBN — BA5||L2(Rd)] dr. Now
E{HBM r) = B (r ||L2(]Rd)}
SSHBAt / / (z,u (o — At); 2)N(dz, do)‘ ’
L2(QxR%)
2
As _
+3 B2 / / (0= As); 2)N(dz, dor)| I

L2(QxR%)

+3H// (2,1 (0 — AL); 2) — (2, ud* (o — As); ))N(dzdcr)‘

SC’(AtJrAs)JrC'/ E{Hu Ho— At) —u S(J—AS)HiQ(Rd)] do,
0
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where we have used Proposition and the assumption [(A.5)l Thus, we get
¢
155 = B e

<C(At+ As) —I—C/ / JE[HuAt(U—At) —uAs(a—As)Hiz(RdJ do dr. (3.16)
0 Jo

We combine (3.15) and (3.16)) in (3.14)) and have

B o)) =5 [ B[l an) dr + Ca [ B[ =
< O(At+As) + c/ot [ BI04 80 (o = 89| dr

(by Proposition [3.3)

< C(At+ As) + c/ot /OTE[HUM B2, | dodr

Hence, an application of the Gronwall’s lemma gives

1
E[Hv(t)l\f,l(w)} +/O E[Hu“ - uASHQLQ(Rd)] dr <C(At + As) ¢!

This implies that

H“At - s”L?(QxHT) < C(At+ As) et

i.e., {u®'} is a Cauchy sequence in L?(Q x Ilr). O

We are now in a position to identify the weak limits ¢, and f,. We have shown that u®t — u
and u2? is a Cauchy sequence in L?(€ x II7). Thanks to the Lipschitz continuity of ¢ and f, one
can easily conclude that ¢, = ¢(u) and f, = f(u).

In view of the variational formula (3.9)), one needs to show the boundedness of %(&At — BAt)
in L2(Q x (0,7); H~*(R%)) and then identify the weak limit. Regarding this, we have the following
lemma.

Lemma 3.6. The sequence {%(ﬂm — BAt)(t)} is bounded in L?(Q x (0,T); H"*(RY)), and

O e = 59 = 2 (um [ [ e N9 1200 0.7 )

where u is given by -

Proof. To prove the lemma, let T' = Q x [0,T] X E, G = Pr x L(E) and ¢ = P ® {; ® m, where
Pr represents predictable o-algebra on Q x [0,7] and L(E) represents a Lebesgue o- algebra on
E. Then L*((I',G,<);R) consists of all square integrable predictable processes which are Borel
measurable functions of z-variable.

The space L2((F,g,§);R) represents the space of square integrable predictable integrands for

Ito-Lévy integrals with respect to the compensated compound Poisson random measure N (dz, dt).
Moreover, Ito-Lévy integral defines a linear operator from L2 ((T',G,<);R) to L*((€, Fr); R) and it
preserves the norm (cf. for example [22]).

Thank to Propositions and uPt(t — At) converges to u in L?(Q x II7). Therefore, in view
of the Proposition Lipschitz property of 7, and the above discussion we conclude that

%/ / z,u;2)N(dz,ds) in L*(Q x I7).

Again, note that

(ug — ug—1) — (Bx — Br—1)
At [(kqmt,mt) :

% (ﬁAt _ BAt

Mz

k=1
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From ({3.2)), we see that for any v € H(R?),

(n+1)At
Unp+1 —
/Rd ( At /n / T, Uupn; 2) N (dz, ds))vdx

=— Vo(unyi1) - Vodr —e Viunt1 - Vodr — / F(upt1) - Vodx
Rd Rd Rd

< {HVQS(unJrl)HL2(Rd) + EHvu’ﬂJrlHLz(Rd) + Cf||un+1HLz(Rd)}||UHH1(Rd)7

and hence

Un —Unp 1A ~
fRd ( +it o ﬁ TEZ-: ) thn(xaun§z)N(dZ,d8))vdx
sup

veH (R4)\{0} 0[] 1 ey

= ||v¢(un+1)”L2(Rd) +5Hv“n+1HL2(Rd) + CfHu"HHLZ(Rd)'

This implies that 2 (a2 — BAY)(t) is a bounded sequence in L2( x (0,T); H~1(R?)).

To prove the second part of the lemma, we recall that BAt — Jo J= n(x,u; z)N(dz,ds) and
@At — y in L?(Q x 7). In view of the first part of this lemma, one can conclude that, up to a
subsequence

(st( — BAY —~ u—/ / x,u;2)N(dz, ds)) in L?(Q x (0,7); H*(R%)).
This completes the proof. O

3.1.3. Existence of weak solution. As we have emphasized, our aim is to prove the existence of
weak solution for viscous problem. For this, it is required to pass the limit as At — 0. To this end,
let « € L?((0,T)) and 3 € L?(2). Then, in view of variational formula (3.9)), we obtain

/ <g(a“ - BAt),v>a5dth+5/ Vult . Vo af de dt dP
ax(o,r) ‘Ot QxIlr

+/ Vo(u?t) - Vv ap d:rdth—i—/ f(w?t) - VvafdzdtdP = 0.
QXHT Q

xIIp

We make use of (3.8), Lemmas and to pass to the limit as At — 0 in the above variational
formulation and arrive at

/QX(OT) En u—/ / x,u; 2) dz ds)) >aﬂdth—|—5/QXHTvu.vvaﬁdxdtdp
+/ {Vow) - Vo+ f(u)- VobasdedtdP =o. (3.17)
QxIlp

Since H'(R?) is a separable Hilbert space, the above formulation (3.17) yields for almost surely

w € Q,
// v, 2)N(dz,ds)) v >+/Rd(€Vu+Vd>(u)+f(u)>~Vvdx:0,

for almost every t € [0,T].
This proves that u is a weak solution of (3.1)). Note that, for every ¢ € H!(R?), it is easily seen
that

1 /9
]E’g/ / (U(S,l‘) —uo(a:))w(x) da:ds‘ < CAt if §< At
R4
Therefore,

5
limsupE|< / / (u(s, ) — ug(x))¥(x) deds| < CAt for very & < At.
510 R4
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Now, by letting At | 0, we have

o
lim 1/ / u(s, x)(x)deds = / uo(x)y(x)de P — almost surely. (3.18)
610 1) 0 Rd R4

3.2. A priori bounds for viscous solutions. Note that for fixed € > 0, there exists a weak
solution, denoted as u. € H'(R?), which satisfies the following variational formulation: P- almost
surely in Q, and almost every ¢ € (0,7T),

<%[u6 - /Ot/En(-,ug(s, F Z)N(dz,ds)],v> + g Vo(uc(t,z)) - Vodz

+ [ {#uatt.) +evuca)} - Voo —0,

for any v € H'(R?). Let 3(u) = u?. Applying It6-Lévy formula (cf. Theorem in the Appendix)
to B(u), one gets that for any ¢ > 0

/]Rd u?(t)da:—&—Q/Ot /Rd [5+¢/(ue($))}\Vu5|2ds—|—2/ﬂw flue) - Vue do
B /Rd uc(0)dr +2 /Ot/E/Rd /0177(%“5(87%)%2)(% + 012, uc; 2)) o de N(dz, ds)

+/0t/E/Rd W2, ue (s, 2); ) dam(dz) ds.

Note that [p. f(uc) - Vue dz =0 as u. € H'(R?). Taking expectation, we obtain
¢ ¢
E[lu.0)]]2] + 5/ E[|Vu. |2 ds +/ E[| VG ue(5))]2] ds
0 0

< B[l + Ctll sy + € [ B[Juc(o] s

An application of Gronwall’s inequality yields

sup E[Hus(t)Hz] Jre/OTIE[HVuE(s)Hg] ds + /OTIE[HVG(UE(S))H;} ds < C.

0<t<T

The achieved results can be summarized into the following theorem.

Theorem 3.7. For any € > 0, there exists a weak solution u. to the problem (3.1). Moreover, it
satisfies the following estimate:

sup_ E | us(0)]7] +5/0TIE[HVuE(s)H§] ds+/0TIE[HVG(u€(s))||§] ds < C, (3.19)

0<t<T
where G is an associated Kirchoff’s function of ¢, defined by G(x) = fow V&' (r)dr.

Remark 3.8. Let us remark that since any solution to (3.1]) is an entropy solution, the solution
U in unique.

4. EXISTENCE OF ENTROPY SOLUTION

In this section, we will prove the existence of entropy solution. In view of the a priori estimates
as in (3.19)), we can apply Lemmas 4.2 and 4.3 of [7](see also [4]) and show the existence of Young
measure-valued limit process solution u(t, z, @), a € (0,1) associated to the sequence {u.(t,z)}es0.

The basic strategy in this case is to apply Young measure technique and adapt Kruzkov’s doubling
method in the presence of noise for viscous solutions with two different parameters and then send
the viscous parameters goes to zero. One needs a version of classical L' contraction principle(
for conservation laws) to get the uniqueness of Young measure valued limit and show that Young
measure valued limit process is independent of the additional (dummy) variable and hence it will
imply the point-wise convergence of viscous solutions.
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4.1. Uniqueness of Young measure valued limit process. To do this, we follow the same
line of argument as in [3] for the degenerate parabolic part and [7] for the Lévy noise. For the
convenience of the reader, we have chosen to provide detailed proofs of a few crucial technical
lemmas and the rest are referred to the appropriate resources. In [4} [7], the authors used the fact
that Au. € L?(Q x II7). Note that, in this case, u. € H'(R?). Therefore, we need to regularize
ue by convolution. Let {7,.} be a sequence of mollifiers in R%. Since u. is a viscous solution to the
problem , as shown in the proof of Theorem Ue * T, 1S a solution to the problem

(ue * 7)) / A uE)*Tn)dS—/ dive (f(ue) * 74) ds+/ / T, U 2 )*TH)N(dZ,dS)
+ /t eA(ug * To(t,))ds ae. t >0, x€R (4.1)
0

Note that, for fixed € > 0, A(u. * 7.) € L2(2 x II7).

Let p and ¢ be the standard nonnegative mollifiers on R and R? respectively such that supp (p) C
[—1,0] and supp (0) = B1(0). We define ps,(r) = %p(%) and gs5(z) = 570(%), where § and 8y are
two positive constants. Given a nonnegative test function ¢ € C12([0,00) x R%) and two positive
constants ¢ and &g, define

¥35,60 (t7 z,s, y) = Péo (t - 5)95(37 - y)¢(3a y) (42>

Clearly ps,(t —s) # 0 only if s — dy <t < s and hence @55, (t,2; s,y) = 0 outside s — y <t < s.

Let ug(t,z) be a weak solution to the viscous problem with parameter § > 0 and initial
condition ug(0,2) = vo(z). Moreover, let J be the standard symmetric nonnegative mollifier on
R with support in [—1,1] and Ji(r) = J(%) for [ > 0. We now simply write down It6-Lévy
formula for ug(t, ) against the convex entropy triple (8(- — k), F?(-, k), ¢°(-, k)) and then multiply
by Ji(ue * 74 (s,y) — k) for k € R and then integrate with respect to s,y, k. Taking expectation to
the resulting equations, we have

elE[/HT /HT /RB”(ua(t,:c) — k)|Vug(t, z)|* 5,6, (t, 2, 8,9) i (e * T(s,y) — k) dkdmdtdyds}

+E /H /H / 5//(ua(t,x)—k)|VG(ue(t,x))|2g05,50(t7x,s,y)Jl(u5*Tn(s,y)—k)dkdwdtdyds}
/H /R/ﬁ vo(x) = k)55, (0,2, 8,y) Ji(ue * 7i(s,y) — k) dkda:dyds}

E| /n /1‘[ /Rﬁ(“‘)(t’f”) — B)0ps.30 (1 2, 5,9) T (e  Tuls, ) — K) dk da di dy ds|

+E[/H//T/E/ [ ot 2 ) + 7ottt 21:2) )

X @s.5,(t, x, 5,y) dr dz N(dz, dt)J;(ue * 7 (s,y) — k) dk dy ds}

e[ [ [ L] [ a8 @t + otz -

X 5.5, (t, , 8, y)Ji(ue * T (s,y) — k) dr dk de m(dz) dt dy ds}
-E /HT /HT / FP(ug(t, ), k)Vaos(x — y) (s, y) po, (t — 8)Ji(ue * 7(s,y) — k) dk dxdtdyd5:|
HE /HT /HT / ¢ (uo(t, ), k) Agos(x — y) ¥(s,y) ps, (t — 8)Ji(ue * Ti(s,y) — k) dk dz dt dy ds}

0 [ [ [ 8 ualta) =00V su0(t.2) - o5, 9) e 5 l5,9) = ) d dwddy s
I JIIp

.e., 101+IOQ<Il+I2+Ig+I4+I5+I6+I7 (43)
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We now apply It6-Lévy formula to (4.1) and obtain

dE{/HT /HT /R,B”(ug * T — k)| V (ue * 7o) 2055, J1 (ug (t, ) — k) dk dz dt dy ds]
—HE[/HT /HT /Rﬁ”(u6 * Ty — k)V(P(ue) % 7) - V(ue * 70)ps.5, J1 (ug (t, x) — k) dk da dt dy ds]

SE[/H /Rd /RB(UE * 7x(0,y) — k)ps.50(t, 7,0,y) Ji(ug(t, v) — k) dk dx dy dt}

+

E[/H /H /Rﬂ(us 5 T(5,) — k) 055,60y (ug (t, ) — k) dkdydsdxdt}

+E[/HT ATAAAdAl(n(y,ua;z)*m)ﬁ’(ue*m+9(n(y,ue;Z)*m)—/f)

X 5.6, 1 (up(t, ) — k) dO dy dk N (dz, ds) da dt}

E[/HT /OT/E/R/W/;G—e><n<y,us;z>*m?ﬁ"(uaw+e<n<y,ua;z>w>—k)

X 5.5, 1 (ug(t, ) — k) dO dy dk m(dz) ds dz dt}
-E / / / B (ue x 7o — k)V((ue) * )V yps,6, Ji (o (t, ) — k) dk da dt dy ds]
“JIIp JIIp JR

—E_/HT /HT /Rﬂ/(us w7 — B)(F(ue) * 7)Vy 05,50 Ji(ug (t, @) — k) dk da dtdyds}

-E /HT /HT / B (ue * Ty — k) (F(ue) % 7)) Vy (ue * 7)) 05,60 J1 (ua(t, ) — k) dk dx dt dy ds}

—{-:IE / / / B (ue * T (8,y) — k)Vy (ue * 7)) - Vs, Ji(ug(t, x) — k) dk dy ds dx dt]
Il JIIp

ie., J01+J02<J1+J2+J3+J4+J5+J6+J7+Jg (44)

We now add (| and (| and look for the passage to the limit in various parameter involved.
Note that Iy ; and Jo,1 are both positive terms and they are left hand side of the inequalities
and respectively. Hence we can omit these terms. Let us consider the expressions Iy and
Jo,2. Recall that

Too = E[/HT /HT /Rﬁ”(u(g(t,x) — k) |[VG (ug(t, 1)) Ps.50 Ji (e * (s, y) — k) dk dz dt dy ds]

Joo = E[/ / / B (ue * 7y — B)V(p(ue) * ) - V(ue * ) ps,5, Ji (uo(t, x) — k) dk dx dt dy ds}.
mp Jip JR
By using the properties of Lebesgue points, convolutions, and approximations by mollifications one

can able to pass to the limit in Iy 2 and Jy 2, and conclude the following lemma.

Lemma 4.1. It holds that

lim lim lim Ipo = [/H y B (ua(t, ) — uc(t,y))|VG(ug(t,z))|*(t,y)os(x — y) do dt dy}

1—0Kk—06—0

and

lim lim lim Jyo = {/H /Rd B (ue(s,y) — ua(s,z))Vo(us(s,y)) - Vue(s,y)

1—0 k—0850—0
x p(s,y)os(x — y) de dy ds}.

Lemma 4.2. [t follows that

limsup limsup lim lim lim (IQ 2+ Jo 2)
-0 es0 1—=0k—080—0 " ’
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> 28] /H/R/ / /““’ya) /“(tz’”) 80 — )T ds) /T do

t,x,7y)
x div,V [¥(t,y)0s(x — y)] dy dodz dy dt] (4.5)
Proof. In view of Lemma we see that
lim lim lim (Zoz2 + Jo,2)

1—0 k—0850—0
:E[/H » B" (ue(t,y) — ug(t, z)) (IVyG(us(t, Y))|? + | VaG(up(t, x))|2)1/)(t, y)os(x — y) dx dy dt} ,

Let wu(t,y,a) and a(t,z,7v) be Young measure-valued narrow limit associated to the sequences
{uc(t,y) teso and {ug(t, z)}g>o respectively. With these at hand, one can use a similar argument
as in [3l Lemma 3.4] and arrive at the conclusion that (4.5)) holds. O

Let us consider the terms (I; + J;) coming from initial conditions. Note that I; = 0 as supp
Ps, C [—00,0). Under a slight modification of the same line arguments as in [7], we arrive at the
following lemma,

Lemma 4.3. It holds that
lim lim lim lim lim (I + J;) = E[/ / By (vo(z) — uo(y)) ¥(0,y)os(x — y) dx dy]
Re JRY

60—0e—01—0~Kr—0§o—0

and

L m / L o (wo(w) o)) (0. pose — y) dady]

= E{/Rd |[vo(2) — uo()| (0, z) d:v}.

We now turn our attention to (I + Jz). Note that Oips, (t — s) = —0sps,(t — s) and B, J; are
even functions. A simple calculation gives

=B [ [ [ A nitsn) — Do) = st~ )

x Ji(ug(t,z) — k) dk dy ds dz dt|.
One can pass to the limit in (I3 + J2) and have the following conclusion.

Lemma 4.4. It holds that

lim lim lim lim lim (I2 + Jg)
6—0e—01—0Kk—05—0

—E| /H/R// (s y,0) — (s, 2,7))0ut(5,9) 03z — v) dy dov dy d s,

and

li IE .y _
wam /HT /}Rd/ / u(s,y,a) — (s, x,7)) 00 (s,y) os(x — y) dvdadydwdé’}

= [ [ ][ |u(s,y,a>—a(s,y,v)}asws?y)dvdadyds}.

Let us consider I and J;. Regarding this, we have the following lemma

Lemma 4.5. It holds that

lim lim lim lim lim Ig
010 €10 110 %10 600

f]E /HT Ad/ / ¢'B S x "Y (svyaa))AzLM(x*y)w(S,y) d’ydadxdyds
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and

lim lim lim lim lim J5
010 €10 110 %10 6040

= [ / (5.9.0). (s, 2.7)) A, [(s. )05 (& — )] dy docda dy .
iy Jre J[o, 1]2
Proof. Let us consider the passage to the limits in I5. To do this, we define,

B[ [ [ [ 0t R ros(o = ) (s, s ¢ = 5) il * is,) = ) ddidyd]

_]E{/H /Rd /]R P (uo (s, ), k) Apos(z — )0 (s, y) i (ue * T (s,y) — k) dk dx dy ds}

Note that, for all a,b,c € R,
|67 (a,0) = ¢°(c.b)| < Cle —al. (4.6)

By using 1 6)), we have

B =E /HT /HT/¢B ug(t, ), ue * T (8, y) — k) Agos(x — y) ¥ (s,v) ps, (t — ) J1 (k) dkdwdtdyds}

_E /H /R /RQSB(ue(s,x)yug * T (8,9) — k) Agos(z — y)ib(s,y)Jy(k) dk dz dy ds}

B[ [ [ (¢ ot s mls.9) = ) = 6 wols.0), e 5 is.) = F)) Avest =)

(s, y) psg (t — 8)Jy(k) dk d dt dy ds]

= [ [ Gt rton - 0pptsn (1= [ pnfe o))

Then X Agos(x —y)Ji (k) dk dx dy ds} .
B <[ [ [ [ lta) oo, vt )5, 0) 0~ 1105) ke v ay )
+O(y)

SCE[/ST% /OT /K ug(t,2) — (s, 2)| s, (¢ — ) it ds| + O(5y)

1 T
SOE[/ / / ot + B 7, ) — ug(t, )| p(~r)da dt dr] + O(5)
r=0 K
where K5 C R? is a compact set depending on v and 4.
Note that, %i% fOT fKa lug(t + dor, ) — ug(t, x)| dz dt — 0 almost surely for all r € [0, 1]. Therefore,
0

by dominated convergence theorem, we have

lim I = E[/H /Rd /R¢5(ue(s,m),k‘)A$Q§(x — (s, y)Ji(ue * T5(s,y) — k) dk dz dy ds]

(50—)0

Moreover, one can use the property of convolution to conclude

lim lim Is = [/H /]Rd /RQSB(v(s,ka)Aigg(x — (s, y)Ji(uc(s,y) — k) dk dz dyds]

k—0§p—0

Passage to the limit as [ — 0:

Let, Bs ::E[/H /Rd/R(bﬁ(ue(s,x), kE)Azos(x —y)(s,y)Ji(uc(s,y) — k) dk dx dyds}

—E[/ (b’B(u@(s, x),us(8,y))Azos(z — y)(s,y) de dy ds
Iy JRrd
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:E[/H /Rd/R(d)/”(ue(s,x),k)—¢5(u9(s,:v),us(s,y)))AxQJ(x*Z/W(S,y)

x Ji(ue(s,y) — k) dk dx dy ds} .
Note that for all a,b,c € R,
|67 (a,b) — ¢7(a,¢)] < C(1+ |a—b])[b—c. (4.7)
Therefore, by we have

B <CE[ [ [ [ (14 uatoa) — kDIt 9) — Kl 8coste — w)l(e.p)

x Jy(ue(s,y) — k) dk dx dy ds}

1 1
2 2 2
SCZ{H(ggggggE[HUe(t)Hz]) +(§gg§ggE[llue<)H 1)’} —0 as 10

One can justify the passage to the limit as ¢ — 0 and # — 0 in the sense of Young measures as
in [4, [7] and conclude

tim iy B [ [ 6 (un(s. ), us(5,0) Avoslir — ). 9) do dy ds|
0—0e—0 L [

R
—E/H/Rd//dﬁ (52,7), u(s,4,0)) Aros(x — y)ib(s, ) dy dovd dy ds|.

This proves the first part of the lemma.

To prove the second part, let us recall that

Js = —IE[/HT /HT /]Rﬁ’(uE * Ty — k)V(P(ue) * 7)) Vyps 50 Ji(ua(t, x) — k) dk dz dt dy ds}

A classical properties of Lebesgue points and convolution yields

lim lim J5 = — E[/H /Rd /Rﬁ’(ug(s,y) — k)Vo(u(s,y)) - Vy[1(s,y)0s(x — y)]

k—0 80—0
X Ji(ug(s, @) — k) dk da dy ds|.

Recall that ¢°(a,b) fb (s — b)¢'(s) ds. Making use of Green’s type formula along with Young
measure theory and keeping in mmd that u(s,y,«) and (s, z,7) are Young measure-valued limit
processes associated to the sequences {u.(s,y)}eso0 and {ug(s,x)}g>o respectively, we arrive at the
following conclusion

limlimlim lim lim Jj
610 €10 10 k—08§0o—0

—E /H/R/ / & (u(s, 9,0, (s, 7,7)) A, [6(s. y)os ( — v)] dy dov iz dy s

This completes the proof of the lemma. O

Next, we want to pass to the limits in (JG + J7) and [5 respectively. A slight modification of the
similar argument as in [3, 4 [7] yields the following lemma:

Lemma 4.6. It holds that
lim lim lim (J@ + J7)

1—=0Kk—068,—0

= ) [ PP (s, - 9 s )l = )] dadyds]

/HT /]Rd/ FP(u(s,y, o), ug(s, ) - Vy[¢(s,9)0s(x — y)] dadz dyds}

€—>0
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o0 /HT /Rd/ / Fﬁ (s,9,0),u(s,2,7)) - Vy[1(s,9)es(z — y)] dvdadxdyds],

and

lim lim lim lim lim 75 (4.8)
60—0e—01—0Kk—05—0

=—IE[/H /]Rd/o /0 Fﬁ(ﬂ(s,x,v),u(s,y,a)) -Vx[g(s(m—y)w(s,y)] dvdada:dyds}.

In view of the above, we now want to pass the limit as (J,0) — (0,0). We use similar line
argument as in the proof of the second part of the Lemmas 5.7 and 5.8 in [7] and arrive at the
following lemma.

Lemma 4.7. Assume that ¢ — 0,0 — 0 cmd — 0, then

lim lim lim lim lim lim lim lim {(Jﬁ +J7) + 15}
¥9—056—0 2 Y —0 610 €0 1—0Kxk—05p—0

:—E /HT// u(s,y, @), (s, y,7)) - Vyo(s,y) dydadyds|.

Let us consider the term I7 + Js. Regarding this, we have the following
Lemma 4.8. For fized § > 0 and f3, it holds that

lim sup ‘17 + Jg‘ =0. (4.9)
(0,e,l,k,80,)—0

Proof. Note that

9 < BB [ [ 19, 5 s IV, (s v)ese = )] dydadis]

<elsle[ [ [ IVt ) 9t~ i ]

(By Cauchy-Schwartz inequality),

<c@et(e] [ amerntonlaval) €] [ [ 9,000 - 9P ad])’

wh—t

<@ b0 (swefie [ [ 19 usty>|2dydt|})§<c<w5>

e>0

Similarly, we have |I7| < C(8,1,0)6 2. This completes the proof. O

Next we consider the stochastic terms I3 + J3. To this end, we cite [7] and assert that for two
constants 17,1y > 0 with T} < Ty,

XTl/ / (t, )N (dz dt)} =0 (4.10)

where J is a predictable integrand and X is an adapted process.
For each g € C*°(R) with #’, 8" € Cp(R) and nonnegative ¢ € C°(Il X Il), we define

M8, ¢(s;y,v / //Rd ugra: )+ n(z, ug(r, z); )—v) B(ug(r,x)—v)}
x p(r,z,s,y)de N (dz,dr)

where 0 < s < T, (y,v) € R? x R. Furthermore, we extend the process u. * 7.(-,y) for negative
time simply by . * 7.(s,y) = uc(0, ) * 7 (y) if s < 0. With this convention, it follows from (4.10)
that

E[/ M8, vs,60](s;y,v) Ji(ue(s — o, y) —v)dydsdv| =0
IIr
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and hence we have J3 =0 and

n=%[ [ [ M1B. 980l 0) (el 7l 9) = 0) = il 75 = B,y) = v)) dy ds d(l .

Our aim is to pass to the limit into the stochastic terms I3+ .J3. For that, we need some estimate
regarding M8, ¢s.s,], a proof of which could be found in [7].

Lemma 4.9. Let v € C®(R) be function such that v € C°(R) and p be a positive integer of the
form p = 2% for some k € N. If p > d + 3 then there exists a constant C = C(v/,1), )

C(,¢,9)
sup (E[|Mh,m,gous;-,->||%w<m>]> S LU (4.12)
0<s<T 50 P
and the following identities hold:

My, ¢l(s;y,v) = M[—, ¢l(s; 9, v)

Oy M7, ¢l(s3y,v) = M7, 0y, ¢](s; 9, ).
Lemma 4.10. It holds that

lim lim lim I3
1—0Kk—05p—0

= IE /H /Rd /E {B(ua(r, z) +n(z, ug(r,z); 2) — us(r,y) — n(y, us(r,y); 2))

— B(ue(r, ) — uc(r,y) —n(y7us( ) )) +B(Ua(7’ ) — ue(r,y))
— B(ug(r,x) + n(w, ug(r, 2); 2 Y(r,y) os(xz —y) m(dz) dscdydr]

H/—’

Proof. Note that, for all y € R, u, * 7,.(-,y) satisfies
due * 7 (s,y) =div(f (ue) * 7(s,9)) ds + Al (uc) * 7w (s, y)) ds

e 7 (s,y) ds + / (n-1ue; 2) % (s, 9)) N (dz, ds).
E

Now apply Ité-Lévy formula on J;(u. * 7.(s,y) — v) to get
Ji(ue * TH(S,y) - U) - Jl(ue * TH(S - 607y) - U)

-/ (e rm(oy) — 0) (@97 (2) # (0,0) + A # (0,8)) + A(D(us) # 7el09)) ) do

do
/ / Ji(ue * 7 (0,y) + (n(-, ue; 2 )*TK(U,y))—v)—Jl(uE*TK(a,y)—v))N(dz,do)

/ //)\ S NI (e % 70 y) = v+ A (0 e 2) 5 7l )

x (n(-,ue; 2) * T (0,9)) 2 dAm(dz) do
. 62 / (v () 2 7l0,)) + e 2 7(0,)) + A1) 7o) )

X Jy(ue * 7 (0,y) —v) do

/ / Ji(ue * 7o (0,y) + (-, ue; 2) x 7 (0,y)) — v) — Ji(ue * 7 (0, y) — U))N(dzydo)

/ //)\ . (1 =N J (ue * me(0,y) — v+ A, ue; 2) * (0, 9)))
x (-, ue; 2) * 7o(0,y))? dAm(dz) do
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Therefore, from and Lemma we have

I3 = —E[/R - M3, @5,50](8;%?1)(/:50 Ji(ue * 7 (0,y) — 0) div(f(ue) * 74 (0, 9)) da) ds dy dv}
- E / - M8, 5,5,)(5; Y, v)(/:éo Ji(ue * 7 (0,y) — v) eA(ue * 7 (0, y)) da) ds dy dv]

—E / MI[B', ¢5.5,](55 5 v )(/ s Ji(ue * 7 (0,y) — v) A(p(ue) * 7 (0, y))da) ds dydv}

It
+E /HT// 5/R/ (r, @) + n(z, up(r, ); z)—v)—ﬁ(ue(r,x)—v))

(Jl<u5 () 005 2) 5 Tl y) = ) = (e )~ 0)

X poo (1 — 8)Y(s,y) 05(x — y) m(dz) dx dr dv dy ds]

B[ [ [ Mposalso] [ //A [ e 7e(0,9) = 0+ A (15 2) % 70, )
X (1 =N, ue; 2) * 7o (0, y))? dAm(dz) da} dy ds dv}

= APHE(5,80) + A5E(8,80) + A5LE(8,80) + BSR4+ AFVE(6,60). (4.13)

Note that, for fixed x and e, A(us * TH) € L*(Q x 7). One can use Young’s inequality for
convolution and replace u. by u. * 7, to adapt the same line of argument as in [7] and conclude

APE(8,50) = 0, AFY(6,80) — 0,  A5He(8,80) — 0, and AFH(6,80) — 0 as §o — 0.
Again it is routine to pass to the limit for BS%* and arrive at the conclusion that

lim lim lim B®H*
1—0Kk—05,—0

=e[ [ [ [ {80t w00 2):2) — wetr) < 0,9):2)
- B(UG(T’ .13) - E(Ta Z/) - 77(3/7 UE( ’y)a Z)) + B(UG(T’ x) - UE(T', y))
_ B(ug(n x) + n(x,ug(r,x); 2) — ue(r, y)) }1/)(7‘, y) os(x — y) m(dz) dz dy dr} .
This completes the proof. (Il

Let us consider the additional terms I, + Jy. A similar line arguments as in [3, [4, [7] along with
classical properties of convolution yields the following:

Lemma 4.11.
o 2] [ [ 09t st 1
X0y e (5, 9); 200 (s, )0 (w — y) dAm(dz) da dy ds|
and

1
O O O AR
X (2, (5, 2); 2)16(5, 2)0s(x — y) AN m(dz) da dy ds|.

Now we add these terms (cf. Lemma [4.11)) with the terms coming from Lemma and have
the following lemma.

Lemma 4.12. Assume that 9 — 04, § = 0+ and ¥~162 — 0+, then

lim sup lim sup [hm lim lim ((Ig +J3)+ Iy + J4))} = 0.
9—0+, 50+, 91620+ 6,e—0 LI=>0x—=0650—0
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Proof. In view of Lemmas [£.10] and [£.11} we see that

im lim Jim ((13 F )+ (I + J4))

1—0Kk—068§,—0

= E /HT /]Rd / Ue (t,x) —ue(t,y) + n(z,up(t, x); 2) — n(y’us(t’y);z))
— (77(1', ug(t, x); 2) — n(y, ue(t, y); Z))BI ('U/Q(t7 %) — ut, y))
_ 5(%9(15, x) — ue(t, y)) } m(dz))z/}(t, y)os(x —y)dedy dt}

/HT /Rd / /T . B"(a+7b)dr m(dZ)) P(t,y)es(x —y) dz dy dt], (4.14)

where a = ug(t,x) —uc(t,y) and b = n(x, ug(t, z); 2) —n(y, u:(t,y); z). By using the similar argument
as one used in the proof of [7, Lemma 5.11], we arrive at

lim lim lim ((13 +Js) + (In + J4)) <y (0 +9716%)T

1—0 k—0355—0

where the constant C; depends only on ¢ and is in particular independent of e. We now let 9 — 0,
§ — 0 and 9162 — 0, yielding

lim sup lim sup {lim lim lim ((13 +J3)+ (s + J4))} <0.
9—0,6—0,0-16250 0,e—0 LI=0K£=050—0

This concludes the proof as lim lim lim ((13 +J3) + (14 + J4)) > 0, thanks to (4.14). O

1—0k—065—0

We now turn our attention back to the terms which are coming from the Lemmas [4.2] and [4.5]
To this end, define

= [ [T e ovaea) Vi
x div, V., [1(s, y)os(x — y)] dy da da dy ds|

e[ [ [ [0 @ ) rasta = o)y da oy ]

[ [ [ [0 lomad.atsan ) Ay [otssasta — )ty dadody ]

:E /HT /Rd/o /0 2Iﬁ(ﬂ(s,m,7),u(s,y,a))+¢ﬁ(ﬂ(5,$7’7)au(579aa))

+ ¢ (u(s,y, a), (s, = 7))}w(s7y)Ay95(w —y)dydadx dyds}

e[ [ ][] Cntutsanitsmn ) + 260 @)t na)

X Vy0(s,y) - Vyos(xz —y) dydadz dy ds}

+IE /HT /Rd/ / ¢° (u(s,y,a), (s, x ’Y))Ayzb(s,y)g(;(a:—y)d’ydadxdyds]
e (4.15)

where

b a
I@h) = [ [ 8- )0 do /5 tor ey a,be R

Our aim is to pass the limit in H as (,5) — (0,0). For this, we need some a priori estimates on
Is(a,b). Here we state the required lemma whose proof could be found in [3].
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Lemma 4.13. The following holds:
1 b b
1.) Ig(a,b) = Ig(b,a) and Ig(a,b)= —f/ / B" (o0 — u)\/ @' (u)\/¢' (o) dp do.
2) 215(a,b) + 6% (a, b) + 6° (b, a) / / 8" (1~ )& () — /I ()] dudor

Moreover, if \/¢' has a modulus of continuity wy, then
2 I(a,b) + 6 (a,b) + 67 (b, @) < Clb— allwy(I9])
and
215(a,b) + ¢?(b,a) < Clb — a||we(|9])|* + C min{29, |b — al}.
Let us back to the expression . Regarding this, we have following:

Lemma 4.14.

i A .
(196)—>00) /HT/ / |p(u(s,y, ) — p(als,y,v))] yw(s,y)dvdadde}

Proof. Let wy be a modulus of continuity of 1/¢/. Then, thanks to Lemma we obtain

|Hq| < CIE / /]Rd/ / lwe (19]) | |u 8,1, ﬂ(s,x,'y)|w(s,y)|Ay95(wfy)|d’ydadxdyds]

jwo ([0D?

SCW)—5

L%
<CR[ [ [ [ [ loaoDPluts.. )~ s, 9006, Waente ~ )l e ay s

B[ [ [ CoIv, () 9yeste - )l dody ds]
IIr JR4

we ([9])[? v
< Ll AN arAT, Z.
<C(y) 5 T C3
Hence, we have
¥ I
Hi|+ [Ha| < C(o )7“""’(| il +O(¢)7|‘*’<f’(lS DI +C5.

Put § = 3. Then, by our assumption we see that

lim (7‘[1 + Hz) =0.
(9,6)—(0,0)

To prove the lemma, it is now required to show

11
li =E - A dydadyd
(19,5)1310’0)%3 [/HT/O /0 |p(uls, y, @) — d(uls, y,7))| Ayt (s,y) dvy do dy 8}

and this follows easily as (a,b) — |¢d(a) — ¢(b)] is Lipschitz continuous and

|67 (a,b) — |¢(a) — o(b)|| < CY for any a,b€R.

All of the above results can now be combined into the following proposition.
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Proposition 4.15. Let a(t, z,7) and u(t, x, «) be the predictable process with initial data v(0,x) and
u(0, z) respectively which have been extracted out of Young measure valued sub-sequential limit of the
sequence {ug(t,r)}os0 and {u.(t,x)}eso respectively. Then, for any non-negative H'([0,00) x R?)
function (t, x) with compact support, the following inequality holds

0< IE[/ ’vo(x) — uo(a:)‘w(o,x) da:} —HE{/HT /01 /01 |a(t, z,v) — u(t,z, @) |Opp(t, x) dy dacdax dt

—IE/H// u(t, z, o), (t,x,’y))oVﬂ/}(t,x)d’ydadxdt}
—E| / v( / / [6(u(t,2.0)) — 6(a(t, 2,7))| dy da) - V(1. 2) da . (4.16)

P First dd (4.3)) and (4.4) and th to the limit lim lim lim lim. Invoking the L
roof. First we a an an en pass to the limi 81%111_1%”15%%% nvoking the Lemmas

. . . . . E and 2 we put § = 93 in the resulting express1on and then let ¢ — 0
with the second parts of Lemmas [43] £4 Keeping in mind the Lemmas [£.7] [£.12] and [£.14] we
conclude that holds for any nonnegative test function ¢ € C2([0,00) x R?). It now follows
by routine approximation argument that holds for any @ with compact support such that
¥ € H([0,00) x R?). This completes the proof. O

Remark 4.16. Note that the same Proposition holds without assuming the existence of a modulus
of continuity for ¢’ if 1 is not a function of x. Indeed, it is possible to pass to the limit first on
the parameter 9, then §, in Lemmas and Thus, if one assumes that 7 is not a
function of the space variable x, it is also possible to pass to the limit first on the parameter ¢,
then J, in Lemma since one would have

lim lim lim ((13 +J5) + (I + J4)) < OV,

1—0 k—050—0

in its proof. Then, the result holds following [3| first situation p.523].

Our aim is to show the uniqueness of u(t, z, &) and @(t, x, ). To do this, here we follow the ideas
of [1l 3], and define for each n € IV,

on () 1, iflz|<n
n\T) = a .
e if |z| > n

where a = % + & in which £ > 0 could be chosen such a way that ¢,, € L2(R9). Also, for each h > 0
and fixed t > 0, we define

1, ifs<t
Pp(s)=q1—22t, ift<s<t+h
0, ifs>t+h.

A straightforward calculation revels that,

V¢n@ﬂ::—afﬁgﬁfiyﬂ>nelﬂ@R%d

EIIEY

A¢p(r) = a2+ 28 —a) d)'r;(é) € L*({|z| > n}).

Clearly (4.16) holds with 9(s,z) = ¢, ()1} (s). Thus, for a.e t > 0, we obtain

1" 1 l}u(s,x,a)—ﬂ(s,ac,v)w)n(x)dfydadx ds
h J { rd Jo Jo }

<l [ ] [ etute ) - it ) 00104 0ty s

—]E / /{|r>n}/ / (s,z,a),a(s,x,7)) - Vo (z)v](s) d'ydadxds}
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_ E[/OT wZ(S)</3{|£>n} /01 /01 ’¢(u(s,x7a)) _ <Z)(12(S,J:,’Y))‘V¢n($) -ﬁd’ydadl’) dS}

E / |v0(x) — 1o ()| én () dm]. (4.17)
Since Vo, (z) 2 >0 on the set d{|xz| > n}, we have, from

t+h
u(s,z, ) — a(s,z,7y)|dn(z) dyda dz| ds
h
Rd

<E| / /{} / A a<z+2e~—a>¢|"ﬁf)\¢<u<s,x,a>> i 2, DAy dev s ]

+E / /{|m|>n}/ |x\ (u(s,x,a),ﬂ(s,x,’y)) . %1/}2(5) dry dadx ds]

B[ [ ) — uo(w)] (o) o] (4.18)

Note that |F(a, b)| < cyrla—b| for any a,b € R. Since ¢ is Lipschitz continuous function and n > 1,
inequality 8)) gives

/ /Rd//W“W (s, z,7)|¢n(x dvdadx]ds
<CB[ [, uter:0) = aloca Mlon(ah o) rdade ] +E[ [ o) = ol (a) ]

Taking limit as h — 0, and then using a weaker version of Gronwall’s inequality, we obtain, for a.e.
t >0,

E /Rd /1 /1 lu(t,z, a) —ﬂ(t,x,’y)‘d)n(x) d’ydadx} < eCTE / [vo(z) — uo(2)|dn () dx]

Thus, if we assume that vo(x) = up(x), then we arrive at the conclusion

/Rd/ / u(t, z, o) — a(t, x, )| pn(x )d’ydadx} =0, (4.19)

which says that for almost all w € Q, a.e. (t,z) € (0,7] x R? and a.e. (a,7) € [0,1]?, u(t,z,a) =
a(t,x,v). On the other hand, we conclude that the whole sequence of viscous approximation
converges weakly in L?(Q x II7). Since the limit process is independent of the additional (dummy)
variable, the viscous approximation converges strongly in LP(2 x (0,T); LP(0)) for any p < 2 and
any bounded open set © C R%.

4.2. Existence of entropy solution. In this subsection, using strong convergence of viscous
solutions and a priori bounds (3.19) we establish the existence of entropy solution to the underlying

problem (1.1).

Fix a nonnegative test function ¢ € Cso([O, ) x R?), B € Fr and convex entropy flux triple
(B,¢,v). Now apply Ito-Lévy formula and conclude

15 | B"(uelt, o)) VG (ue(t, 2))|*0(t, ) da dt]

IIr

15 /Rdﬁ(uE(O,m))w(O,x) dx} —EE[lB B (ue(t, 2)) Ve (t, z) - Vib(t, ) dmdt}

IIr

E|
[
+E[15 / (Bue(t. )0t ) + v(ue(t,2) At 2) = Vib(t,3) - C(ue(t,2)) ) do dt]
[
[

1p /OT/E/W /01(1—9)772(%@65(1%96);Z)ﬂ"(us(tw)+977(90,ua(t»$);2))
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x (t, ) df dzm(dz) dt} (4.20)

Let the predictable process u(t,z) be the pointwise limit of u. (¢, z) for a.e. (t,x) € (0,T) x R?
almost surely. One can now pass to the limit in (cf. same argument as in [7]) except the
first term. The pointwise limit of u.(¢,z) is not enough to pass the limit in the first term of the
inequality because u. is in a gradient term. For this, we proceed as follows: fix v € L%(Q2 x IIr).
Define

fe= \/ﬁ”(ue(t,x))i/)(t,m)lB, and  g. = VG(uc(t, z)).
Note that, f. is uniformly bounded and g. — g = VG(u(t,z)) in L?*(Q x ). Also, f. con-
verges to f pointwise (up to a subsequence) where f = +/B"(u(t,x))y(t,x)1p. Since |f-v| <
118|002 (t, ¥)|v(t, )| and right hand side is L? integrable, one can apply dominated convergence
theorem to conclude

fev — fv in  L*(Q x I7p).

Moreover, we have f. g. — fg in L?*(Q x IIr) and therefore, by Fatou’s lemma for weak conver-
gence,

E[1s |5 (e, 2) VG u(t, ) Pte, ) d at]

< lim inf ]E[IB B (ue (t,))| VG (ue (t, ) (¢, x) da dt]

IIr

Thus, we can pass to the limit in as € — 0 and arrive at following inequality.

1B/n B (ult, )|V G u(t, 2))P(t, ) d di] ~ 13/ Bluo(2)(0, ) do

+E|1p /OT/E/]Rd /01(1 — 0)n?(z,u(t,x); 2)B" (u(t, x) + 0 n(z, u(t, z); 2))

% (t, z) df dem(dz) dt]. (4.21)

We are now in a position to prove the existence of entropy solution for the underlying problem

()

Proof of the Theorem[2.3] The uniform moment estimate (3.19) together with a general version of
Fatou’s lemma gives

swp Elju(t, )[3] < oo and [VG)|Es g, < oo

For any 0 < ¢ € C"’O([O o0) x R?) and given convex entropy flux triple (3,¢,v), Eq. - ) holds
for every B € Fp. Hence, the following inequality

y Blug(x))y (0, z) de + . Blu(t, z))0pp(t, x) da dt
+ / v(u(t,x))AY(t, z) de dt — Vi(t, z) - C(u(t,x)) dedt
Ir IIr

T 1 R
—|—/0 /E/Rd/o n(xz,u(t,x); 2)8 (u(t,x)+0n(x,u(t,x);z))1/1(t,z) df dx N(dz,dt)
+/E/HT/0 (1= 0 (z,u(t,x); 2)B" (u(t, z) + On(z, u(t,z); 2))(t, ) df de dt m(dz)



DEGENERATE PARABOLIC PDE WITH LEVY NOISE 27

= B" (u(t, ) |VG(ult, )| ¢(t, ) do dt

holds P-almost surely. This shows that u(¢,z) is an entropy solution of (1.1)) in the sense of
Definition This completes the proof. O

We now close this section with a sketch of the justification of our claim in Remark [2.5] To see
this, let hs denote a smooth even convex approximation of |.|P define for positive x by:

hs vanishes at 0 and uniquely recovered from its second order derivative defined as
hy(z) =aP~%is x € 0, 3] and 55 if 2 > 3.
It holds that , 0 < hs(z) A h(z) = K,|x|P and there exists C}, such that 0 < hY(z) < Cph(x).
Furthermore, it is easily seen that hY(z +y) < C, (R} () + hi(y)).

Note that the weak Ito-Lévy formula in Theorem makes sense for 5 = hs, as hf is bounded.
This enables us write, for almost every ¢ > 0,

E/ hs(ue)dz — E /Rdh(;(uo)derE/ /Rd (ue) + )R (ue)|Vue|* dz dt
—E/ //R (e + 1, ue; ) — hs(ue) — (e, ue; 2D () ) dwm(dz) .

:E/O /E/Rd/o (1= 0)(n(z,uc; 2)) A (ue + On(z, uc; 2)) d de m(dz) ds.

We can now use the properties of hy and the assumptions on 7 to arrive at

E | hs(u)de <E | hs(up)da + C, E/ / 1+ u?)hY (uc)ds
R4 R4

Rd
gE/ \u0|pdx—|—KnE// hs(ue)ds
Rd 0 JRrd

and, by a weak Gronwall inequality, EfRd hs(ue)dr < efntE fRd |ug|Pdx for all almost all ¢. This
implies E [,, [uc|Pdz < e“"'E [, |ug|Pdz by monotone convergence theorem. The solution u will
inherit the same property by Fatou’s lemma.

If ug is bounded and n(x,u; z) = 0 for |u| > M, M been given, then, consider non-negative regular
convex function x — h(x) = [(z + K)7]? + [(z — K)™]? where K = max(M + My, |lug||oo). Since
h(ug) = 0 and h vanishes where 7 is active, the It6 formula Yields E [;, [h(uc)|dz = 0 and u, is
uniformly bounded by K. Again, the solution w will inherit the same property by passing to the
limit.

5. UNIQUENESS OF ENTROPY SOLUTION

To prove the uniqueness of entropy solution, we compare any entropy solution to the viscous
solution via Kruzkov’s doubling variables method and then pass to the limit as viscous parameter
goes to zero. We have already shown that limit of the viscous solutions serve for existence of entropy
solution for the underlying problem. Now let v(¢,z) be any entropy solution and u. (¢, z) be viscous
solution for the problem (3.1)). Then one can use exactly the same argument as in Section [4] and
end up with the following equality

// lu(t, 2, @) — v(t, 2)|¢n(x) dadz| = 0.

This implies that, for almost every t € [0,00), v(t,2) = u(t, z, ) for almost every z € R, (w,a) €
Q x (0,1). In other words, this proves the uniqueness for entropy solutions.



28 IMRAN H. BISWAS, ANANTA K. MAJEE, AND GUY VALLET

APPENDIX A. WEAK ITO-LEVY FORMULA

Let u be a H'(R%)-valued JF;-predictable process and it is a weak solution to the SPDE
du(t,z) — Ap(u(t, x)) dt =div, f(u(t, x)) dt + / n(x, u(t,z); 2)N(dz, dt)
E

+eAu(t,x)dt, t>0, zcR% (A1)

In addition, in view of (3.8)), we further assume that u € L?((0,7T) x Q; H'(R?)). Moreover, u
satisfies the initial condition ug € L?(R?) in the following sense: P -almost surely

Jim //R (t,2)é da:—/Rduo(x)d)(x)da:. (A2)

for every ¢ € C°(R4). We have the following weak version of Itd-Lévy formula for u(t, ).

Theorem A.1. Let the assumptions hold and u(t,-) be a H'(R?)-valued weak solution

of (A.1)), as described in subsection [3.1.3|, which satisfies (A.2)). Then for every entropy triplet
(B,¢,v) and ¥ € CL2([0,00) x R?), it holds P-almost surely that

Bu(T,z))Y(T, x) de — / B(u(0,2))1(0, z) dx
Rd Rd
= ﬂ( (t,2))0(t, x) da dt — V(t, z) - C(u(t,x)) dedt

IIr

/H //0 (z,u(t,z); 2) B (u(t, z) + 0 n(z, u(t, z); 2))(t, z) dd N(dz, dt) dz
_ 200 ult.2): 28" (ult. « z,u(t,x); 2 T m(dz) dx
+/H/E/ (1= 0P (@ u(t, 2): 2)B" (ult, ) + O (e ult, x): 2))b(t, ) dO m(d2) dr
- /H (5V¢(tax)'vxﬁ(u(t,x))+sB”(u(t,x))|Vmu(t,m)\2w(t,x)) du dt

— qb'(u(t,x))ﬁ”(u(t,x))|Vu(t,x)|2w(t,x) d:cdt+/ viu(t,z))Ay(t, x) dx dt

HT 1_IT
for almost every T > 0.
Proof. Let {7} be a standard sequence of mollifiers on R%. Then for every p(-) € C1((0,T)) we

have
T

—/0 u(s, ) * 1P (s) ds —/ p(8)A(p(u(s,)) * ) ds —|—/ p(s)div, (f(u) * 7;) ds

T
/ / (z,u,2) *Tk)N(dZ, ds)Jre/ Au* (s, z))p(s) ds
0
(A.3)
holds P-almost surely. For every n € N, define

nsifOSsS%
e 1
pt(s): 1, 1f£§8<t
" l—n(s—t), ift+i>s>t
0, elsewhere.

It follows by standard approximation argument that (A.3) is still valid if we replace p(-) by pt, (+).
Afterwards, we invoke right continuity of stochastic integral and standard facts related to Lebesgue
points of Banach space valued functions to pass to the limit n — oo and conclude for almost all
t>0

t
uk Tyt —Uo*pk—/ Ao *Tk)ds+/ divy (f(u) * 1) ds
0
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t t
—|—/ / (n(z, u, 2) * Tk)N(dz, ds) + e/ Au*73(s, x)) ds (A.4)

0o JE 0
P-holds almost surely. In the above, we have used that the weak solution satisfies the initial
condition in the sense of (A.2)). Let 8 be the entropy function mentioned in the statement and ¢ be

the test function specified. Now we apply It6-Lévy chain rule to 8(u * 7¢(t,-)) to have, for almost
every t > 0,

BluxTy(t,-)) = ﬂ(uo*pk)—k/ B (wx Tk (t, ) Alp(uls,-)) * i) ds
/ﬁ wk T (t dlvz(f(u)*m)ds+e/0 B (w7t ) Au* (s, 2)) ds
+/O/E B(u*m—i—n(m,u,z)*m)—,B(u*T))N(dz,ds)

+ /t/ (ﬂ(u * 7k +n(w,u, 2) x 7)) — Blux 1) —nlx,u, 2) x 7.8 (u* Tk)) m(dz) dt,
0 (A.5)

P-almost surely. We now apply It6-Lévy product rule on S(ux* 7)1 (¢, z) and integrate with respect
to = to obtain for almost every T > 0,

/Rd ﬂ(u * 7 (T x)) (T, x) dx

B(uo * pr) (0, z) d:lc—i—/ Blu * 7)0st (s, x) da ds

Rd

/ /R (s (s, ) Alg(uls, ) * 7)(s, @) dx ds
/ / (w7, ) diva (f (u) % 7o) (s, 2) dar s
+€/0 Rd¢(sz)ﬁ,(u*7k(5,'))A(u*rk(s,x))da:dg
! /OT /R /E (s, @) (Blus i+ e, u, 2) + 70) = Bus 7)) deN(dz, ds)

T
[ [ e (Busnt ez m) = Bl s ) = i z) « m (wen)) m(dz) dads,
o JriJE
(A.6)
almost surely. Note that u* 74 (7T, -) — u(T,-) and ug * 7, — ug in L2(2 x R?) as k — 0. Therefore
by Lipschitz continuity of 8, we have [o,8(u * (T, ) ¥(T,x)dz — [ou B(u(T, a:)) (T, z) dx
and [pq B(uo * pr)¥(0,z) do — f]Rd 1) (0,7) dz in L?(2). By a similar reasoning, fo Jga B(u *

7%)0s(s, z) dx ds — fo Jpa B(w)0st(s,x) dz ds as k — 0.
Furthermore, note that

/T/ B (u* T (t, ) A(d(uls, ) * 7)1 (s, ) ds da
0 Rd

T
== [ [ (et 08 o nt.a) ). (Vou0) ) s.2)) s

and Vu, Vo(u) € L2 (O,T; L2(Q % Rd)).
Therefore, V, (¢(t, )8 (u * 7(t,2))) = Vo (v(t,2)f (u(t,z))) and Vé(u) * 7, — Vo(u) in
L%(0,T;L*(Q2 x RY)) as k — 0. Therefore, fOT Jga B (w s 7i(t, ) A (uls, ) * 7o) (s, z) ds do —
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- foT Jra Ve (l//(t, )3’ (ult, x))) . (qu(u(s, x)) dx ds

in L'(Q) as k — 0. By the same reasoning,

U(s,2)B (u*7(s, 7)) A(u* (s, 2)) deds — — Vo (¥(s,2)8 (u(s, 2))).V (u(s, z)) dz ds.
Ir IIr
in L1(Q) as k — 0.
Also, it may be recalled that div,f(u) € L*(0,T;L*(Q x R?)) and B(u * 7,) — B(u) in
L? (O,T; L2(Q x Rd)) as k — 0. Therefore,

/ / B (u 7i(t, ) dive (f (u) * 70 )Yb(s, ) dw ds — / / B (w)divy (f (u)v(s, z) dz ds
0 JRd 0 JRrd

as k — 0in L'(Q). To this end, we denote

Ii(s,2) = /]Rd P(s,x) (ﬁ(u * T + 0z, u, 2) x 1) — Blu* 7')) dz,
I(s,2) = /]Rd P(s,x) (B(u +n(z,u,2)) — Blux 7')) dx.

It follows from straightforward computation that fOT S (s, 2) — I(s, z)[*m(dz) ds — 0 as k — 0.
Therefore, we can invoke Ito-Lévy isometry and pass to the limit £ — 0, in the martingale term in
. This competes the validation of passage to the limit as £k — 0 in every term of . The
assertion is now concluded by simply letting £ — 0 in and rearranging the terms.

O
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